Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene.

نویسندگان

  • A J Frenzel
  • C H Lui
  • Y C Shin
  • J Kong
  • N Gedik
چکیده

We investigate the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrate that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. These observations can be accounted for by the interplay between photoinduced changes of both the Drude weight and carrier scattering rate. Our findings provide a complete picture to explain the opposite photoconductivity behavior reported in (undoped) graphene grown epitaxially and (doped) graphene grown by chemical vapor deposition. Notably, we observe nonmonotonic fluence dependence of the photoconductivity at low carrier density. This behavior reveals the nonmonotonic temperature dependence of the Drude weight in graphene, a unique property of two-dimensional massless Dirac fermions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity

The optical conductivity of quasicrystals is characterized by two features not seen in ordinary metallic systems. There is an absence of the Drude peak and the interband conductivity rises linearly from a very low value up to normal metallic levels over a wide range of frequencies. The absence of a Drude peak has been attributed to a pseudogap at the Fermi surface but a detailed explanation of ...

متن کامل

Ultrafast photoconductivity of graphene nanoribbons and carbon nanotubes.

We present a comparative study of the ultrafast photoconductivity in two different forms of one-dimensional (1D) quantum-confined graphene nanostructures: structurally well-defined semiconducting graphene nanoribbons (GNRs) fabricated by a "bottom-up" chemical synthesis approach and semiconducting carbon nanotubes (CNTs) with a similar bandgap energy. Transient photoconductivities of both mater...

متن کامل

Analytical quantum current modeling in GNSFET

Carbon nanoscrolls (CNSs) belong to the same class of carbon-based nanomaterialsas carbon nanotubes. As a new category of quasi one dimensional material Graphene Nanoscroll (GNS) has captivated the researchers recently because of its exceptional electronic properties like having large carrier mobility. GNS shape has open edges and no caps unlike Single Wall Nanotubes (SWNTs) which are wou...

متن کامل

Electronics and magnetism of patterned graphene nanoroads.

Individual ribbons of graphene show orientation-dependent electronic properties of great interest, yet to ensure their perfect geometry and integrity or to assemble free ribbons into a device remains a daunting task. Here we explore, using density functional theory, an alternative possibility of "nanoroads" of pristine graphene being carved in the electrically insulating matrix of fully hydroge...

متن کامل

Dynamic conductivity of semiconducting manganites ap - proaching the metal - insulator transition

We report the frequency-dependent conductivity of the manganite system La1−xSrxMnO3 (x ≤ 0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 113 5  شماره 

صفحات  -

تاریخ انتشار 2014